

ADVANCED SUBSIDIARY GCE MATHEMATICS

Probability & Statistics 1

QUESTION PAPER

Candidates answer on the printed answer book.

OCR supplied materials:

- Printed answer book 4732
- List of Formulae (MF1)

Other materials required:

• Scientific or graphical calculator

Thursday 26 May 2011 Morning

4732

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the printed answer book and the question paper.

- The question paper will be found in the centre of the printed answer book.
- Write your name, centre number and candidate number in the spaces provided on the printed answer book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the printed answer book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the printed answer book and the question paper.

- The number of marks is given in brackets [] at the end of each question or part question on the question paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- The printed answer book consists of **12** pages. The question paper consists of **8** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER / INVIGILATOR

• Do not send this question paper for marking; it should be retained in the centre or destroyed.

- 1 Five salesmen from a certain firm were selected at random for a survey. For each salesman, the annual income, *x* thousand pounds, and the distance driven last year, *y* thousand miles, were recorded. The results were summarised as follows.
 - n = 5 $\Sigma x = 251$ $\Sigma x^2 = 14323$ $\Sigma y = 65$ $\Sigma y^2 = 855$ $\Sigma xy = 3247$
 - (i) (a) Show that the product moment correlation coefficient, r, between x and y is -0.122, correct to 3 significant figures. [3]
 - (b) State what this value of *r* shows about the relationship between annual income and distance driven last year for these five salesmen. [1]
 - (c) It was decided to recalculate r with the distances measured in kilometres instead of miles. State what effect, if any, this would have on the value of r. [1]
 - (ii) Another salesman from the firm is selected at random. His annual income is known to be £52 000, but the distance that he drove last year is unknown. In order to estimate this distance, a regression line based on the above data is used. Comment on the reliability of such an estimate.
 [2]
- 2 The orders in which 4 contestants, *P*, *Q*, *R* and *S*, were placed in two competitions are shown in the table.

Position	1st	2nd	3rd	4th
Competition 1	Q	R	S	Р
Competition 2	Q	Р	R	S

Calculate Spearman's rank correlation coefficient between these two orders. [5]

3 (i) A random variable, X, has the distribution B(12, 0.85). Find

(a)	P(X > 10),	[2]

- **(b)** P(X = 10), [2]
- (c) Var(X). [2]
- (ii) A random variable, Y, has the distribution $B(2, \frac{1}{4})$. Two independent values of Y are found. Find the probability that the sum of these two values is 1. [4]

4 The table shows information about the time, *t* minutes correct to the nearest minute, taken by 50 people to complete a race.

Time (minutes)	$t \leq 27$	$28 \leq t \leq 30$	$31 \leq t \leq 35$	$36 \leq t \leq 45$	$46 \leq t \leq 60$	$t \ge 61$
Number of people	0	4	28	14	4	0

- (i) In a histogram illustrating the data, the height of the block for the $31 \le t \le 35$ class is 5.6 cm. Find the height of the block for the $28 \le t \le 30$ class. (There is no need to draw the histogram.) [3]
- (ii) The data in the table are used to estimate the median time. State, with a reason, whether the estimated median time is more than 33 minutes, less than 33 minutes or equal to 33 minutes.

[3]

- (iii) Calculate estimates of the mean and standard deviation of the data. [6]
- (iv) It was found that the winner's time had been incorrectly recorded and that it was actually less than 27 minutes 30 seconds. State whether each of the following will increase, decrease or remain the same:

(a)	the mean,	[1]
(b)	the standard deviation,	[1]
(c)	the median,	[1]
(d)	the interquartile range.	[1]

5 A bag contains 4 blue discs and 6 red discs. Chloe takes a disc from the bag. If this disc is red, she takes 2 more discs. If not, she takes 1 more disc. Each disc is taken at random and no discs are replaced.

4

(i) Complete the probability tree diagram in your Answer Book, showing all the probabilities. [2]

The total number of blue discs that Chloe takes is denoted by X.

(ii) Show that $P(X = 1) = \frac{3}{5}$. [2]

The complete probability distribution of *X* is given below.

x	0	1	2
$\mathbf{P}(X=x)$	$\frac{1}{6}$	$\frac{3}{5}$	$\frac{7}{30}$

- (iii) Calculate E(X) and Var(X).
- 6 A group of 7 students sit in random order on a bench.
 - (i) (a) Find the number of orders in which they can sit. [1]
 - (b) The 7 students include Tom and Jerry. Find the probability that Tom and Jerry sit next to each other. [3]
 - (ii) The students consist of 3 girls and 4 boys. Find the probability that
 - (a) no two boys sit next to each other, [2]
 - (b) all three girls sit next to each other. [3]

[5]

- (i) Given that the least squares regression line of y on x is used for an estimation, state which of x or y is treated as the independent variable. [1]
- (ii) Use the diagram to explain what is meant by 'least squares'. [2]
- (iii) State, with a reason, the value of Spearman's rank correlation coefficient for these data. [2]
- (iv) What can be said about the value of the product moment correlation coefficient for these data? [1]
- 8 Ann, Bill, Chris and Dipak play a game with a fair cubical die. Starting with Ann they take turns, in alphabetical order, to throw the die. This process is repeated as many times as necessary until a player throws a 6. When this happens, the game stops and this player is the winner.

Find the probability that

(i)	Chris wins on his first throw,	[1]
(ii)	Dipak wins on his second throw,	[3]
(iii)	Ann gets a third throw,	[2]
(iv)	Bill throws the die exactly three times.	[4]

Note: "(3 sfs)" means "answer which rounds to to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding	
Penalise over-rounding only once in paper.	

	$\frac{1}{\sqrt{(14323-251^2)(855-65^2)}} \text{or } \frac{1}{\sqrt{1722.8\times 10}}$	M2	M2 for correct subst'n in any correct r formula	or $\frac{-80}{\sqrt{9(14.50)}}$
	$\sqrt{(14323 - \frac{1}{5})(833 - \frac{1}{5})}$	A 1 2		$\sqrt{8614\times50}$
	= -0.1219	AI 3	Must see at least 4 sts	Allow -0.1218
b	Poor/no/little/weak/not strong corr'n or rel'nship or link between income & distance oe	B1 1	or slight neg/weak corr'n (oe) between income & distance In context, ie <u>any</u> comment on income & distance, even if incorrect	eg, Poor neg corr'n, so higher distance, lower income No rel'nship. Low income doesn't cause low distance NOT "Not proportional" NOT "negative corr'n"
	No effect or 0.122 oe	B1 1	ag "Nathing" ar "Nane" ag	Ino recovery of this mark in (II)
C		DII	eg rouning of rone oe	NOT "Little effect" NOT "Not much effect"
ii	<i>r</i> close to 0, or small, or poor corr'n oe or $r = -0.122$	B1	or Weak/no corr'n or poor rel'nship oe or No evidence to link sales & distance	or because small sample Ignore other
	Unreliable	B1dep 2	Condone "innacurate" or "incorrect" or "less reliable" or "not that reliable" "The data is unreliable" Must have correct reason	Allow: "Unreliable because pts do not fit a st line" "Unreliable because pts are scattered" "Unreliable because not strong neg" "Unreliable because <i>r</i> not close to -1" "Unreliable because <i>r</i> smaller than (–)0.7" NOT "Unreliable because extrapolated": B0B0
				but "Unreliable because extrapolated and poor corr'n": B1B1
Total		7		

Mark Scheme

2	Attempt ranks	M1	Ignore labels of rows or columns	
	4123 or 1234 or 1234 oe			
	2134 1342 1423	A1	No ranks seen, $d = (0), \pm 1, \pm 1, \pm 2$, or	$N_{1} = 1^{2} + \sum_{i=1}^{2} \frac{1}{2} + \sum_{i$
	Σd^2 attornated (or 6)	N/1	d = (0), 1, 1, 4 any order: MIA1	No wking, $\Delta d = 6$: M1A1M1 No wking, $\Delta d^2 = eg 14$: M0A0M0 but can gain 3 rd M1
	2a attempted (01.6)	MI	$\operatorname{NOT}(2a)$	No wking, Zu cg 14. Workowo, but can gain 5 Wi
	$1 - \frac{62a}{4(4^2 - 1)}$	M1		No wking, ans $\frac{2}{5}$: Full mks
	$=\frac{2}{5}$ oe	A1 5		Allow both sets of ranks reversed
				NB incorrect method: 2 3 4 1
				2 1 3 4 OR $d = (0), \pm 2, \pm 1, \pm 3$ any order OR $d^2 = (0), 4, 1, 9$ any order
				(leading to $\Sigma d^2 = 14$ and $r_s = -\frac{2}{5}$):
				M0A0M1M1A0
Total		5		
3ia	$(1 - 0.5565)$ or $12 \times 0.85^{11} \times (1 - 0.85) + 0.85^{12}$	M1	or $1 - ((1-0.85)^{12} \dots {}^{12}C_{10} \times 0.85^{10} (1-0.85)^2)$ ie $1 - (all 11 correct binomial terms)$	or 1 – 0.557
				NB 1 – 0.4435 (oe): M0A0
	= 0.4435 or 0.443 or 0.444 (3 sf)	A1 2		
b	$0.5565 - 0.2642$ or ${}^{12}C_{10}(1 - 0.85)^2(0.85)^{10}$	M1		or 0.557 – 0.264
	= 0.2923 or 0.2924 or 0.292 (3 sf)	A1 2		
c	$12 \times 0.85 \times (1-0.85)$			
ii	$\left(\frac{3}{4}\right)^2$ AND $\frac{3}{4} \times \frac{1}{4}$ seen (possibly \times 2)	M1 M1	eg $(\frac{3}{4})^2 + \frac{3}{4} \times \frac{1}{4}$ or $2 \times (\frac{3}{4})^2 + 2 \times \frac{3}{4} \times \frac{1}{4}$ or $0.5625 + 0.1875$ or $0.5625 + 0.375$	or $\frac{9}{16}$ and $\frac{3}{16}$ or $\frac{9}{16}$ and $\frac{3}{8}$ eg in table or list
	$\left(\frac{3}{4}\right)^2 \times 2 \times \frac{3}{4} \times \frac{1}{4}$ oe or $\frac{27}{128}$ or 0.211	M1	or eg 0.5625 × 0.375	Allow even if further incorrect wking
	$2 \times \left(\frac{3}{4}\right)^2 \times 2 \times \frac{3}{4} \times \frac{1}{4} \text{ oe}$	M1	Fully correct method	
	$=\frac{27}{64}$ or 0.422 (3 sfs)	A1 4		Ans 0.211: check wking but probably gets M1M1M0A0
				Use of 0.85 instead of $\frac{1}{4}$: MR max M1M1M1A0
Total		10		

4i	Method is either: Just $4 \div 3$ or $\frac{4}{3}$							
	or: Use of ratio of correct frequencies AND ratio of widths (correct or 4 and 2)							
4i	$5.6 \times \frac{4}{28} \times \frac{5}{3}$ or $0.8 \times \frac{5}{3}$		M1 for $5.6 \times \frac{4}{28} \times \frac{4}{2}$ or $0.8 \times \frac{4}{2}$	Correct calc'n using 5.6, 28, 4, 5, 3 oe: M2 Correct calc'n using 5.6, 28, 4, 4, 2 oe: M1				
	or $(5.6 \div \frac{28}{5}) \times \frac{4}{3}$ or $\frac{4}{3}$ or $4 \div 3$ oe	M2	or $(5.6 \div \frac{28}{4}) \times \frac{4}{2}$ or 0.8×2 oe (= 1.6)	is fully correct method: M2				
	$=1\frac{1}{2}$ or $\frac{4}{2}$ or 1.33 (3 sf) oe	Δ1 3		or: incorrect class widths, otherwise correct method: M1				
		III J	No wking, ans 1.3: M2A0	$\frac{4}{3}$ correctly obtained (or no wking) then further incorrect:				
			Ans 1.6: Check wking but probably M1M0A0	M1M0A0				
				Use of ratio of widths OR freqs but not both: M0				
				eg 5.6 × $\frac{4}{28}$ (= 0.8) or 5.6 × $\frac{3}{5}$ (= 3.36): M0				
				$\frac{4}{2} = 2$: M0M0A0				
ii	25 or 26 or 25.5	B1	or 25 & 26	May be implied, eg by 21 or 22 or 21.5				
	Med is 21^{st} (or 22^{nd} or 21.5^{th}) in 31-35 class or "25 - 4" Can be implied by calc'n	B1	or med in last \approx 7 in class or 33 \approx 14 th in class or 33 \approx 18 th in whole set Can be implied by diagram	Calc'ns need not be correct but need to contain relevant figures for gaining B1B1				
	Med > 33 or "more than"	B1 3	indep	The " \approx " sign means ± 2				
				$\frac{\text{Alternative Method:}}{22 \approx 10^{\text{th}} \text{ subscription}}$				
				$33 \approx 18$ value B1 More values above 33 than below oe B1				
				Med > 33 B1				
				Ignore comment on skew				
				NB Use EITHER the main method OR the Alternative Method (above), not a mixture of the				
	<u> </u>			two. Choose the method that gives most marks.				

Mark Scheme

June 2011

iii	\geq 3 mid-pts attempted	M1	seen or implied	Not nec'y correct values (29, 33, 40.5, 53)
	$\Sigma fx \div 50 \text{ attempted} (= \frac{1819}{50})$ = 36.38 or 36.4 (3 sf)	M1 A1	\geq 3 terms. or 36 with correct working	Allow on boundaries. Not class widths
	Σfx^2 attempted (= 68055.5)	M1	\geq 3 terms.	Allow on boundaries. Not class widths (3364, 30492, 22963.5, 11236)
	$\sqrt{\frac{68055.5}{50} - \left(\frac{1819}{50}\right)^2} \text{or } \sqrt{1361.11 - 36.38^2} \\ (= \sqrt{37.6056})$	M1	completely correct method except midpts & ft their mean, dep not $\sqrt{(neg)}$	Allow class widths for this mark only NB mark is not just for "– mean ² ", unlike q5(iii)
	-6.12(2.5c)	A1 6		$\Sigma(fx)^2$: M0M0A0
		AI 0		If no wking for $\Sigma f x^2$, check using their x and f
	Alt for variance: $\Sigma f(x - \overline{x})^2 (= 1880.28)$ M1			If no wking or unclear wking:
	$\sqrt{\frac{1880.28}{50}}$ M1			full mks for each correct ans for incorrect ans:
	= 6.13 (3 sf) A1			$35.8 \le \mu \le 36.9 \qquad \text{M0M1A0} \\ 6.0 \le \text{sd} \le 6.25 \qquad \text{M1M0A0}$
iv	(a) Decrease (b) Increase	B1B1	Ignore other eg "slightly" or "probably"	Ignore any comments or reasons, even if
1 V	(c) Same (d) Same	B1B1 4	ignore other, of singling of producty	incorrect
Total		16		
5	If done with replacement, no marks in any pa	rt of this q	uestion.	
51	All correct probs correctly placed, matching labels, if any	B2 2	B1 for 4 correct probs anywhere	Allow B2 with missing labels but only if probs consistently placed, ie R above B throughout
ii	$\frac{4}{10} \times \frac{6}{9} + \frac{6}{10} \times \frac{4}{9} \times \frac{5}{8} + \frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}$		B1: two of these products (or their results) added (not multiplied)	
	or $\frac{4}{15} + \frac{1}{6} + \frac{1}{6}$			
	$(=\frac{3}{2}$ AC)	B2 2	or $1 - (\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} + \frac{6}{10} \times \frac{4}{9} \times \frac{5}{8} + \frac{4}{10} \times \frac{5}{9})$	B1: 1 – two of these products (or results) added (not multiplied)
	5 10)		or $1 - (\frac{1}{6} + \frac{1}{10} + \frac{2}{15})$	ND is some the data of 1 -14
				AG so no wking no mks
				No ft from tree in (i)

Mark Scheme

iii	$\sum xp \text{ attempted} = \frac{16}{15} \text{ oe or } 1.07 \text{ (3 sfs)}$	M1 A1	Both non-zero terms	\div 3 etc or $\frac{1}{\Sigma xp}$: M0	
	$\Sigma x^{2} p \text{ attempted} \qquad (= \frac{23}{15} \text{ or } 1.53)$ $- \frac{16}{15} \frac{12}{15} = \frac{89}{225} \text{ oe } \text{ or } 0.395 \text{ or } 0.396 \text{ (3 sfs)}$	M1 M1 A1 5	Both non-zero terms indep but dep +ve result Ans 0.388: check wking from $\mu = 1.07$; prematur	÷ 3 etc: or $\frac{1}{\Sigma x^2 p}$: M0 t g but probably comes re rounding: M1M1A0	Not Σxp^2 NB easier to gain than equiv mark in qu 4(iii) not 0.395, but check for dot over 5 for recurring
	Alt for Var(X): $\Sigma(x-\bar{x})^2 p$ M2		$\frac{1}{6} \times \frac{16}{15}^2 + \frac{3}{5} \times \frac{1}{15}^2 + \frac{3}{5}$ all correct M2, 2 terms of	$\frac{7}{30} \times \frac{14}{15}^2$ correct M1	
Total		9			
<u>6ia</u>	5040	B1 1			
b	6! or 5!×6 or 720	M1		$^{1}/_{7}\times ^{1}/_{6}$ M1*	NOT 6! in denom
	\div 7! or \div "5040" or 1440 or (5! or 6!) \times 2 = $^{2}/_{7}$ oe or 0.286 (3 sf)	M1 A1 3	Any \div 7! or "5040" but NOT any \times 2	\times 6 or \times 2 M1 dep*	eg $^{6!}/_{5040}$ or $^{1}/_{7}$ or 0.143 or $^{1}/_{21}$ (3 sfs): M1M1A0
iia	$3! \times 4!$ alone or 144 ($\div 7!$ or "5040")	M1	$\frac{4}{7} \times \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$ oe	or 7C3or7C4	Not $3! \times 4! \times \dots$ (eg not $3! \times 4! \times 5$) not $\frac{1}{3! \times 4!}$, not $\frac{1}{144}$
	(1.71 or 3040) = $1/_{35}$ oe or 0.0286 (3sf)	A1 2			NB no mark for ÷ 7! or "5040" in this part
b	5 seen or 5! seen	M1			or GGGBBBB, BGGGBBB, BBGGGBB, BBBGGGB, BBBBGGG
	$3! \times 4! \times 5$ or $5! \times 3!$ or 720 or 5×144	M1	or $5 \times \frac{3}{7} \times \frac{2}{6} \times \frac{1}{5} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{7} \times \frac{1}{6} \times \frac{1}{7} \times \frac{1}{7}$	$(3^{2} \times^{2}/_{2})$ oe: M2	NB no mark for \div 7! or "5040" in this part
Total	$(\div 7! \text{ or } ``5040'')$ = ¹ / ₇ oe or 0.143 (3 sf)	A1 3	or 5 × "(iia)":	M2	
l otal		9			

7i	x	B1 1	Ignore explanations. "Neither" or "Both": B0	
ii	Diag showing vertical differences only	B1	Allow description instead of diag: "Distances from pts to line // to y-axis" oe	Allow \geq one line, from a point to the line
	State that sum of squares of these is min oe	B1 2	dep vert or horiz lines (not both) drawn or described	Must have Min, Squares, Distances & Sum
iii	-1 Ranks opposite or reversed or <u>perfect</u> neg corr'n between <u>ranks</u> oe	B1 B1dep 2	Not approx –1 As <i>x</i> increases, <i>y</i> decreases	Allow eg: -1 because neg corr'n so ranks must be reversed Ignore other NOT neg corr'n or strong neg rel'nship oe NOT comment about "disagreement" or "agreement"
iv	"Negative" or "Not –1"	B1 1	eg "Strong neg" or any negative value > -1 or "Close to -1 "	Any implication of Negative, except NOT "Negative gradient" and NOT " -1 " given as the value of r
Total		6		
8	Incorrect <i>p</i> (eg "cubical die means 18 sides hence $p = \frac{1}{18}$ "): can gain all B & M marks.			
8i	$\frac{25}{216}$ oe or 0.116 (3 sfs)	B1 1		
ii	$\binom{5}{6}^7 \times \frac{1}{6}^7$ alone = 0.0465 (3 sfs) or $\frac{78125}{1679616}$	M2 A1 3	M1 for $({}^{5}/_{6})^{8} \times {}^{1}/_{6}$ alone	
iii	$(5/6)^8$ oe alone = 0.233 (3 sfs) or $\frac{390625}{1679616}$	M1 A1 2	$1 - P(X \le 8)$, with exactly 8 correct terms	NOT $1 - (\frac{5}{6})^8$, NOT $(\frac{5}{6})^8 \times$
iv	NB If more than 5 products are added (eg P($1 \le X \le 12$): no marks			
	$ ({}^{5}_{6})^{9} \times {}^{1}_{6} + ({}^{5}_{6})^{10} \times {}^{1}_{6} + ({}^{5}_{6})^{11} \times {}^{1}_{6} + ({}^{5}_{6})^{12} \times {}^{1}_{6} $ $ (= 0.0323 + 0.0268 + 0.0224 + 0.0187) $	M3	M3 for all correct or M2 for 3 of these added or these 4 plus 1 extra or 0.0817 or 0.0680 or 0.139 or 0.116	$ \begin{cases} (5/_6)^9 - (5/_6)^{13} & \text{or } 1 - (5/_6)^{13} - [1 - (5/_6)^9] & \text{M3} \\ \text{or } (5/_6)^{8,9 \text{ or } 10} - (5/_6)^{12, 13 \text{ or } 14} \\ \text{or } 1 - (5/_6)^{12, 13 \text{ or } 14} - [(1 - (5/_6)^{8, 9 \text{ or } 10}] & \text{M2} \end{cases} $
	= 0.100(2 sfs)		or M1 for \geq 1 of these terms or values seen; ignore incorrect	or $\pm [(5/6)^9 - (1 - (5/6)^{13})]$ or $\pm [1 - (5/6)^9 - (5/6)^{13}]$ M1
Total	- 0.100 (3 515)	AI 4	Allow 0.1 with wking	
		- · ·		

Total 72 marks